На Земле насчитывается более 1000 действующих вулканов. Серьёзную опасность для летательных аппаратов представляют облака вулканического пепла, выброшенные в атмосферу. Пепел воздействует на фюзеляж и аэродинамические поверхности самолета, а также на турбореактивные двигатели. Аккумуляция его частиц на сопловом аппарате может стать причиной отключения двигателя. В условиях глобального роста мировых авиаперевозок уделяется особое внимание безопасности полетов, в том числе оценивается устойчивость работы двигателей при попадании самолетов в облака вулканического пепла. Учёные АО «ОДК-Авиадвигатель» и Пермского Политеха впервые численно оценили объёмы высокотемпературных зон в тракте двигателя, в которых частицы пепла переходят в жидкую фазу и представляют опасность. Результаты исследования опубликованы в научном журнале «Теплофизика и аэромеханика» СО РАН.
Аккумуляция стекловидных отложений пепла на сопловом аппарате приводит к значительному снижению площади проходного сечения, как следствие, к непрекращающимся помпажам компрессора. В конечном итоге за этим следует выключение двигателя в полёте, как это произошло 15 декабря 1989 года, когда самолет Boeing 747 попал в плотное облако пепла вулкана Редаут (Аляска, США) на высоте 7500 м. Экипаж предпринял попытку подняться над облаком вулканического пепла на номинальном режиме. В результате этого произошло выключение всех четырёх двигателей, и только мастерство пилота позволило избежать катастрофы.
При выполнении полёта в условиях пепловой запылённости воздуха частицы пепла залетают в воздухозаборник двигателя, а затем через компрессор в рабочее пространство камеры сгорания, где они плавятся под влиянием высокой температуры газов (свыше 1400°). Попадая на поверхность лопаток соплового аппарата турбины, частицы охлаждаются и кристаллизуются, образуя отложения. Пространство между лопатками уменьшается. Это ведёт к потере газодинамической устойчивости компрессора и выключению двигателя».
Пермские учёные провели численное моделирование теплофизических процессов в камере сгорания на трёх режимах работы перспективного двигателя: крейсерском, номинальном и режиме малого газа при воздействии пепла вулкана Шивелуч Камчатской гряды. Им удалось установить, что объём высокотемпературных зон внутри камеры сгорания применительно к двигателю ПД−14, в котором возможно плавление частиц вулканического пепла, на крейсерском режиме превышает 54%, на режиме набора высоты – более 81%, а на режиме полётного малого газа – не более 25,3%, что подтверждает необходимость снижения режима работы двигателя.
Как сообщает сетевой портал Naked Science, полученные результаты полностью подтверждают рекомендации Международной организации гражданской авиации (ИКАО) понизить тягу двигателей до малого газа для уменьшения объёмов зон, где может происходить плавление частиц. Затем покинуть облако пепла, развернув воздушное судно на 180°. Выход на номинальный режим для облёта облака сверху недопустим.
Исследование учёных АО «ОДК-Авиадвигатель» и Пермского Политеха помогло оценить зоны плавления частиц вулканического пепла и установить режимы, во время которых существует риск выключения двигателя. Это позволит сделать полёты более безопасными.
08.01 13:00 -4° | 08.01 16:00 -4° | 08.01 19:00 -6° | 08.01 22:00 -6° | 09.01 1:00 -8° | 09.01 4:00 -10° |